Prediction of Species-Specific Volume Using Different Inventory Approaches by Fusing Airborne Laser Scanning and Hyperspectral Data
نویسندگان
چکیده
Fusion of ALS and hyperspectral data can offer a powerful basis for the discrimination of tree species and enables an accurate prediction of species-specific attributes. In this study, the fused airborne laser scanning (ALS) data and hyperspectral images were used to model and predict the total and species-specific volumes based on three forest inventory approaches, namely the individual tree crown (ITC) approach, the semi-ITC approach, and the area-based approach (ABA). The performances of these inventory approaches were analyzed and compared at the plot level in a complex Alpine forest in Italy. For the ITC and semi-ITC approaches, an ITC delineation algorithm was applied. With the ITC approach, the species-specific volumes were predicted with allometric models for each crown segment and aggregated to the total volume. For the semi-ITC and ABA, a multivariate k-most similar neighbor method was applied to simultaneously predict the total and species-specific volumes using leave-one-out cross-validation at the plot level. In both methods, the ALS and hyperspectral variables were important for volume modeling. The total volume of the ITC, semi-ITC, and ABA resulted in relative root mean square errors (RMSEs) of 25.31%, 17.41%, 30.95% of the mean and systematic errors (mean differences) of 21.59%, −0.27%, and −2.69% of the mean, respectively. The ITC approach achieved high accuracies but large systematic errors for minority species. For majority species, the semi-ITC performed slightly better compared to the ABA, resulting in higher accuracies and smaller systematic errors. The results indicated that the semi-ITC outperformed the two other inventory approaches. To conclude, we suggest that the semi-ITC method is further tested and assessed with attention to its potential in operational forestry applications, especially in cases for which accurate species-specific forest biophysical attributes are needed.
منابع مشابه
Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data
Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on...
متن کاملEstimation of Forest Variables using Airborne Laser Scanning
Holmgren, J. 2003. Estimation of Forest Variables using Airborne Laser Scanning. Doctoral dissertation. Airborne laser scanning can provide three-dimensional measurements of the forest canopy with high efficiency and precision. There are presently a large number of airborne laser scanning instruments in operation. The aims of the studies reported in this thesis were, to develop and validate met...
متن کاملTowards Automatic Single-sensor Mapping by Multispectral Airborne Laser Scanning
This paper describes the possibilities of the Optech Titan multispectral airborne laser scanner in the fields of mapping and forestry. Investigation was targeted to six land cover classes. Multispectral laser scanner data can be used to distinguish land cover classes of the ground surface, including the roads and separate road surface classes. For forest inventory using point cloud metrics and ...
متن کاملAirborne laser scanning based forest inventory for forest management by applying novel metrics and multiple data sources
The aim of this work was to develop airborne laser scanning (ALS) based forest inventory for practical forest management by applying novel horizontal metrics and multiple data sources. In particular, this work examined classification of forest land attributes (study I), prediction of species-specific stand attributes (study II) and detection of spatial pattern of trees (study III) and need for ...
متن کاملSimulating Sampling Efficiency in Airborne Laser Scanning Based Forest Inventory
A simple simulator was developed to test whether airborne laser scanning can be used as a strip sampling tool for forest inventory purposes. The simulator is based on the existing two stages, grid based laser inventory procedure. A population of trees was created using an existing forest stand structure generator. Each tree was represented by means of its 3D-crown model derived from airborne la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017